
Sains Malaysiana 40(6)(2011): 643–650

Incorporating Optimisation Technique into Zadeh’s Extension Principle for
Computing Non-Monotone Functions with Fuzzy Variable

(Menggabungkan Teknik Pengoptimuman ke dalam Prinsip Perluasan Zadeh untuk Komputeran
Fungsi-Fungsi Tak Bermonoton dengan Pembolehubah Kabur)

M. Z. AHMAD* & M. K. HASAN

ABSTRACT

This paper proposes a new computational method for computing non-monotone functions that take a fuzzy interval as
their arguments. The proposed method represents an implementation of optimisation technique into Zadeh’s extension
principle. By taking into account the dependency problem that exists in fuzzy environment, the proposed method can
avoid the effect of overestimation in computation. This problem usually arises when the same fuzzy interval is computed
separately in fuzzy interval computation. The proposed method is simple to use and can be implemented in many practical
applications. In order to show the capability of the proposed method, several non-monotone functions with trapezoidal
fuzzy intervals are studied.

Keywords: Fuzzy set; optimisation; Zadeh’s extension principle

ABSTRAK

Makalah ini mencadangkan satu kaedah komputasi baru untuk komputeran fungsi-fungsi tak bermonoton yang mengambil
selang kabur sebagai pembolehubahnya. Kaedah yang dicadangkan merupakan suatu perlaksanaan teknik pengoptimuman
di dalam prinsip perluasan Zadeh. Dengan mengambilkira masalah kebergantungan yang wujud di dalam persekitaran
kabur, kaedah yang dicadangkan ini dapat mengelakkan masalah terlebih anggaran dalam pengiraan. Masalah ini
biasanya wujud apabila selang kabur yang sama dikira secara berasingan di dalam komputasi selang kabur. Kaedah
ini mudah untuk dilaksanakan dan dapat diterapkan di dalam pelbagai penggunaan praktikal. Untuk menunjukkan
kebolehan kaedah yang dicadangkan, beberapa fungsi tak bermonoton dengan selang kabur trapezoid dikaji.

Kata kunci: Pengoptimuman; prinsip perluasan Zadeh; set kabur

INTRODUCTION

The mathematics of fuzzy set theory was coined in 1965
by Zadeh (1965). Since its birth, the theory of fuzzy
set has been rigorously developed and it has influenced
in many fields of application. For example, it has been
extensively used in control system, image processing,
communication and integrated circuit manufacturing. One
of the main fundamental principles in fuzzy set theory is
the so called Zadeh’s extension principle (Zadeh 1965).
It provides a mechanism of extending a real continuous
function to a function accepting fuzzy set as its argument.
In general, the computation of Zadeh’s extension principle
is rather difficult tasks. The simplicity can only be found
if the function to be extended is monotone. However,
the difficulty arises when the function is non-monotone
(Chalco-Cano et al. 2009). Without a proper method,
the computation of Zadeh’s extension principle may not
guarantee to have low computational complexity since it
would require infinite numbers of computation.
 Today, several methods have been proposed in order
to compute Zadeh’s extension principle. One of the earlier
methods was proposed by Kaufmann and Gupta (1991),

which based on the a – cuts and interval arithmetic.
However, the results are not completely satisfying. In
fact, the use of the straightforward interval arithmetic into
computation leads to overestimation in the results. Due to
this, many researchers have proposed some new techniques
such as the requisite constraint (Klir 1997), the fuzzy
weighted average (Dong & Wong 1987; Wood et al. 1992
and Yang et al. 1993), the vertex method (Dong & Shah
1987), the transformation method (Hanss 2002 & Klimke
2003), and the spline approximation method (Chalco-Cano
et al. 2009). However, these proposed methods increased
computational complexity when applied to non-monotone
functions as well. Therefore, a new computational method
has to be proposed so that the computational complexity
and overestimation in the results can be reduced.
 In this paper, we propose a new method for computing
non-monotone functions that take fuzzy set as their
arguments. This method is based on minimising and
maximising of a function, which is finding the minimum
and maximum at every level of a – cut. In this paper, we
only consider the problem of finding the minimum, since
the maximum can be easily found by noting that max g(x)

644

= – min (–g(x)), that is the maximum of g(x) is the negative
of the minimum of –g(x).
 In order to solve the optimisation problems, we
use Brent’s method (Brent 2002), which combines the
golden section search with parabolic interpolation. One
of the advantages of using this method is that it does not
require the calculation of derivative. This is particularly
useful when the derivative of a function, required by
most non-monotone functions, is difficult or impossible
to obtain analytically. The idea of Brent’s method is to
find a minimum of a parabola through three points. If the
function to be minimised is nicely parabolic near to the
minimum, then the parabola fitted through any three points
in a single leap to the minimum. In the worst possible case,
where the parabolic interpolation is acceptable but useless,
then the method will approximately alternate between
parabolic interpolation and golden section search (Press
et al. 2007).
 In case where the function is reduced to monotonically
increasing or decreasing, then we find the minimum at the
endpoints. These enormous varieties of geometry should
be considered to reduce function evaluations during
computation. Please note that Brent’s method will only
find a local minimum and not a global minimum, unless
the function is unimodal. By a unimodal function we
mean there exists a unique number m ∈ [a, b] such that
the function g(x) is monotonically decreasing on [a, m]
and monotonically increasing on [m, b]. Even though the
method of Simulated Annealing (Kirkpatrick et al. 1983)
has been developed to find global minimum, but it is not a
practical way for computing Zadeh’s extension principle.
The reason is that the method requires a big computational
effort during iteration and at the end we cannot guarantee
that the global minimum found is the correct one.

BASIC CONCEPTS

In the following, we briefly elaborate some definitions and
important concepts in fuzzy sets theory.

FUZZY SETS

According to Zadeh (1965), a fuzzy set is a generalisation
of a classical set that allows membership function to take
any value in the unit interval [0, 1]. The formal definition
of a fuzzy set is as follow:

Definition 1: Let U be a universal set. A fuzzy set A in U
is defined by a membership function A(x) that maps every
element in U to the unit interval [0, 1].
 A fuzzy set A in U may also be presented as a set of
ordered pairs of a generic element x and its membership
value, as shown in the following equation:

 A = {x, A(x)) | x ∈ U}. (1)

Definition 2: Let A be a fuzzy set defined in U. The support
of A is the crisp set of all elements in U such that the
membership function of A is non-zero, that is,

 supp (A) = {x ∈ U | A(x) > 0}. (2)

Definition 3: Let A be a fuzzy set defined in U. The core
of A is the crisp set of all elements in U such that the
membership value of A is 1, that is,

 core (A) = {x ∈ U | A(x) = 1}. (3)

Definition 4: Let A be a fuzzy set defined in ℜ. A is called
a fuzzy interval if

1. A is normal, that is there exists x0 ∈ ℜ such that
A(x0) = 1;

2. A is convex, that is for all x, y ∈ ℜ and 0 ≤ λ ≤ 1, it
holds that

 A(λx + (1 – λ)y) ≥ min(A(x), A(y));

3. A is upper semi-continuous, that is for any x0 ∈ ℜ. it
holds that

4. [A]0 = is a compact subset of ℜ.

Definition 5: Let A be a fuzzy interval defined in ℜ. The
α – cut of A is the crisp set [A]α that contains all elements
in ℜ such that the membership values of A is greater than
or equal to α, that is

 [A]α = {x ∈ ℜ | A(x) ≥ α}, α ∈ (0.1]. (4)

For a fuzzy interval A, its α – cuts are closed intervals in
ℜ and we denote them by

 [A]α = [a1
α, a2

α], α ∈ (0, 1]. (5)

Definition 6: A fuzzy interval A is called a trapezoidal
fuzzy interval if its membership function has the following
form:

 (6)

and its α – cuts are simply

 [A]α = [a + α(b – a), d – α(d – c)], α ∈ (0, 1]. (7)

This definition asserts that the trapezoidal fuzzy interval A
is defined by four numbers a < b < c < d, where the core of
A is the interval [b, c] and its support is the interval (a, d)
Figure 1 shows the example of trapezoidal fuzzy interval.

 645

In this paper the set of all trapezoidal fuzzy intervals will
be denoted by F(ℜ).

 Let F(X) and F(Y) be the sets of all fuzzy sets
defined in X and Y, respectively and g : X → Y be a
continuous function. The function g induces a mapping
g : F(X) → F(Y) such that if A is a fuzzy set in X, then its
range under g is a fuzzy set B = g(A) whose membership
function is expressed as in the following equation
(Zadeh 1975a, Zadeh 1975b and Zadeh 1975c):

 (9)

where

 g–1 (y) = {x ∈ X | g(x) = y}.

Román-Flores et al. (2001) have shown that if g : X → Y
is a real continuous function, then g : F(X) → F(Y) is a
well-defined function, and

 [g(A)]α = g([A]α), (10)

for all α ∈ [0.1] and A ∈ F(X).
 In general, to find a fuzzy set B in Y is not an easy
task. An exception occurs when g is monotone. If g is non-
monotone, the function values at the endpoints of fuzzy set
A in X are not the correct endpoints of fuzzy set B in Y.

THE PROPOSED METHOD

In this section, we first study the concept of dependency
problem that exists in fuzzy environment. Then, we present
an example with different types of calculations for the same
problem. Following this concept, we develop a new method
for computing continuous functions that take trapezoidal
fuzzy interval as its argument. The computational
complexity of the proposed method is also studied.

THE DEPENDENCY PROBLEM

The dependency problem in fuzzy environment exists
when the same fuzzy interval is computed separately in
fuzzy interval computation. To understand this concept,
we give an example. Given the trapezoidal fuzzy interval
A(-1,0,1,2) with α – cuts are [A]α = [α–1,2–α] for α ∈ (0,1].
Suppose we use the function defined by g(x) = 5x2–2x+2
and we want to find g(A), where g is a real continuous
function and A is a trapezoidal fuzzy interval. There
are two common ways to find g(A). First, we apply the
straightforward fuzzy interval arithmetic, which is based
on the α – cut of fuzzy interval:

 g([A]α) = 5[α–1,2–α].[α–1,2–α]–2[α–1,2–α]+2

If α = 0, then we have:

 g([A]0) = [–12, 24]. (11)

ARITHMETIC OPERATIONS OF FUZZY INTERVAL

In this subsection, we recall some arithmetic operations
of fuzzy interval. Arithmetic operations of fuzzy interval
are generalisation of the operations of interval arithmetic
introduced by Moore (1966). First, we recall the four basic
arithmetic operations of real interval, namely:
1. addition: [a, b] + [c, d] = [a + c, b + d];
2. subtraction: [a, b] - [c, d] = [a - d, b + c];
3. multiplication:

[a, b].[c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)];

4. division:

 where c and d ≠ 0.

 Let A and B are two different fuzzy intervals and
denote ‘*’ be any of the four basic arithmetic operations.
For α ∈ (0,1], [A]α and [B]α are close intervals in ℜ (by
definition). Hence, the basic arithmetic operations of fuzzy
intervals A and B can be defined as follows:

 [A*B]α = [A]α *[B]α. (8)

 In this case the four standard arithmetic operations
of real interval can be used directly for every level of α.
For division of two different fuzzy intervals, we require
that 0 ∉ [B]0. However, if A and B are the same fuzzy
intervals, then the basic arithmetic operations are defined
in different ways (see Klir 1997).

THE EXTENSION PRINCIPLE

The idea of the extension principle is easy to understand.
Let g be a function that maps from X to Y. The extension
principle provides a mechanism to transform a fuzzy set
defined in X to a fuzzy set defined in Y.

FIGURE 1. Trapezoidal fuzzy interval

A
lp

ha

x

646

 Second, we apply Zadeh’s extension principle by
considering that the trapezoidal fuzzy interval is computed
separately:

 g(A) = 5A2 – 2A + 2. (12)

For particular α = 0, the solution is therefore

 g([A]0) = [–2, 24]. (13)

 Unfortunately, both solutions (see Eqs. (11) and (13))
are not correct because they do not represent the actual
range of g(x) for x ∈ [–1, 2]. To get the correct result, we
have to define the whole expression on the right hand side
of g(x) as a new function. Then we apply Zadeh’s extension
principle. We refer to the example discussed above and
apply this idea to it then we have the following result:

 g([A]0) = [9/5, 18], (14)

which is the actual range of g(x) for x ∈ [–1. 2]. This
dependency problem can also be seen in numerical
methods for differential equations with fuzzy initial values.
However, many researchers did not take into account
this problem when deriving the numerical methods for
differential equations with fuzzy initial values (see Ma et
al. 1999, Abbasbandy & Allahviranloo 2002, Abbasbandy
& Allahviranloo 2004, Pederson & Sambandham 2007,
Palligkinis et al. 2008 and Pederson & Sambandham 2008).
Consequently, the diameters of the solutions of differential
equations with fuzzy initial values increase as t increases.
This is always the case when the same fuzzy interval is
computed separately in fuzzy interval computation. This
is shown in preliminary studies conducted by Ahmad and
Hasan (2010).

DISCRETISATION OF TRAPEZOIDAL FUZZY INTERVALS

Let A(a,b,c,d) be a trapezoidal fuzzy interval with α – cuts
are denoted by [A]α = [a1

α, a2
α] for all α ∈ (0,1], where a1

α
= a + α(b – a) and a2

α = d – α(d – c). First, we descretise α
up to n points on the interval (0,1]. The points are equally
spaced using Δh = 1/(n – 1). The discretisation points are
given by αi = αi – 1 + Δh, for i = 2, …, n. After discretisation,
we have the following set of α with n elements of point:

 α = {α1, …, αi, …, αn}, (15)

where α1 = 0, αi = αi–1 + Δh and αn = 1 for i = 2, …, n. From
Eq. (15) and using Definition 5, we have the following set
of intervals:

 I = {[A]α1, …, [A]αi, …, [A]αn}. (16)

 For the different α – cuts of A the following property
holds:

 [A]αi+1 ⊆ [A]αi, ∀αi, αi+1 ∈ (0,1] with αi ≤ αi+1
(17)

for i = 1,2,...,n - 1. From (17), it is clear that the α – cut of
A at αi+1 is subset of the α – cut of A at αi (see Figure 2).

 Due to this, the α – cut of A can also be constructed
as the union of sub-intervals as shown in the following
equations:

 (18)

 (19)

(20)

Let g : ℜ → ℜ be a real continuous function and we want
to find a trapezoidal fuzzy interval B = g(A) that is induced
by g . In this study, we compute B = g(A) at each level of αi
for i = 1,2, ... ,n according to the following equations:

 (21)

 (22)

 (23)

FIGURE 2. α – discretisation of a trapezoidal fuzzy interval

A(x)

x

 647

(24)

 (25)

(26)

Here, and are the minimum and maximum values
which obtained from Eqs. (21) – (26), which finally turn
out to be the endpoints of the α – cuts of trapezoidal fuzzy
interval B. The optimisation problems in Eqs. (21) till (26)
will be performed as follows: (1) if g(x) is decreasing or
increasing on the sub-intervals, then the optimal solutions
are obtained at the endpoints of the sub-intervals; (2) if
g(x) is unimodal on the sub-intervals, then we use Brent’s
method (Brent 2002). To test whether g(x) is decreasing,
increasing or unimodal on the sub-intervals, we do
monotonicity testing. In this test, we take any three points
in the sub-intervals. For example, we take a, b and c as
the three points in the interval [a, c]. These three points
are more then enough because the interval [a, c] is a very
small interval. Here, a is the lower bound of [a, c], b is
the midpoint in the interval [a, c] and c is the upper bound
of the interval [a, c]. In monotonicity testing, we have the
following five possibilities:

for every a < b < c,

1. if g(a) < g(b) < g(c), then g is increasing on the interval
[a, c]. So, the minimum is g(a) and the maximum is
g(c);

2. if g(a) > g(b) > g(c), then g is decreasing on the interval
[a, c]. So, the minimum is g(c) and the maximum is
g(a);

3. if g(a) > g(b) < g(c), then g is unimodal on the interval
[a, c]. So, the minimum is predicted around g(b) and
the maximum is max (g(a),g(c));

4. if g(a) < g(b) > g(c), then g is also unimodal on the
interval [a, c]. So, the minimum is min (g(a),g(c)) and
the maximum is predicted around g(b); or

5. if | g(a) - g(b) | < ε and | g(b) - g(c) | < ε, then g is
closely horizontal. So, the minimum of g(x) is closely
equals to the maximum of g(x) for x ∈ [a,c].

 In order to have low computational complexity, we
propose a new strategy to find the minimum and maximum
values on the interval . We start from αn = 1 and
continue downward until α1 = 0. For instance, at αi for i
=1,2,…,n, we have 2 ̇ (2i – 1) optimisation problems to be
solved (see Eqs. 23 and 24). However, we only consider
the first and the last optimisation problems. The other
optimisation problems have already been solved at αi+1.
By taking the minimum (maximum) of all results of the
optimisation problems, we have a new minimum value
(a new maximum value). The minimum value (maximum
value) at αi can be similar to or smaller (bigger) than the
minimum (maximum) found at αi+1, depending on the
function under consideration. This process is repeated
for all levels of α. As a result, we have a set of intervals,
which finally turns out to be a trapezoidal fuzzy interval as
well. Next, we introduce the following error of computing
B = g(A):

Definition 7: Let g : ℜ → ℜ be a real continuous function.
Given a trapezoidal fuzzy interval A on ℜ. The error of
computing B = g(A) is given by

 (27)

where and are the α – cuts
of analytical solution and approximation solution,
respectively.

COMPUTATIONAL COMPLEXICITY

The computational complexity of the proposed method
can be determined by calculating the total number of
function evaluations. It is also depending on the total
number of α ∈ [0,1] that we have discretised. If g(x) is
decreasing or increasing on the sub-intervals, then the
computational complexity can be calculated as follow:

 cp = 3 + 6(n – 1), (28)

where n is the total number of α ∈ [0,1].

NUMERICAL EXAMPLES

In this section, we use the proposed method to illustrate
the approximation of Zadeh’s extension principle for
some non-monotone functions. Please note that one
requirement for Zadeh’s extension principle is that the
functions chosen should be continuous on its domain.
If the function is one-to-one mapping, the solution of
Zadeh’s extension principle is straightforward. However,
if the function is not one-to-one mapping, the problem
arises when two or more distinct points in its domain are
mapped into the same point in its image. In this case, we
need to take the supremum (maximum) of two or more
membership values (Zadeh 1975a, Zadeh 1975b and
Zadeh 1975c).

648

Example 1: We consider the following trapezoidal fuzzy
interval A defined by

The α – cut of A is given by:

 [A]α = [4α/5+1,3 – 4α/5], α ∈ (0,1].

Suppose we use the following function:

 g(x) = 3x – x2

and we want to find g(A) = 3A – A2. The function g is
continuous on the support of A and it has an extreme point
at x = 1.5. The analytical solution of Zadeh’s extension
principle is given by:

By using the method proposed in this paper, we obtain the
approximation of g(A), which is exactly the same as the
analytical solution (see Figure 3(c)). The approximation
errors are listed in Table 1. The graphs of A(x), g(x)
and g(A) are depicted in Figures 3(a), 3(b) and 3(c),
respectively.

 In term of computational complexity, we observed
that the total number of function evaluations required in
this example is 63 with n = 11.

Example 2: We consider the following trapezoidal fuzzy
interval A defined by:

TABLE 1. Approximation errors for Example 1

α Error
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05

FIGURE 3(c). Comparison between analytical solution (solid
line) and its approximation (circle mark)

A
lp

ha

g(A)

FIGURE 3(b). Function handle

f(
x)

x

FIGURE 3(a). Fuzzy interval A

A
lp

ha

x

 649

The α – cut of A is given by:

Suppose we use the following function:

 g(x) = sin(x)

and we want to find g(A) = sin(A). The sine function is
periodic with a period of 2π. Since it is defined on the
support of A, then it has an extreme point at x = π/2.
So, the correct range of g(A) is defined on the interval

. From Zadeh’s extension principle, the analytical
solution is given by:

 By using the technique proposed in this paper, we
obtain the approximation of g(A). The graphs of A(x),
g(x) and g(A) are depicted in Figures 4(a), 4(b) and
4(c), respectively. From the graph, we can see that the
approximation solution is exactly equal to the analytical
solution. The approximation errors are listed in Table 2.
 In term of computational complexity, we observed
that the total number of function evaluations required in
this example is 70 with n = 11.

CONCLUSIONS

We have proposed a new computational method for
computing non-monotone functions that take a trapezoidal
fuzzy interval as their arguments. The proposed method
is based on minimising and maximising of a function,
which is the function takes on the minimum and maximum
values. In this paper, we have considered only the problem
of finding the minimum, since the maximum can be easily
found by noting that max g(x) = – min(–g(x)). The method

proposed in this paper greatly improves the computational
aspect, especially in handling non-monotone functions.
In the future, the proposed method will be incorporated
into classical numerical methods for solving non-linear
differential equations with fuzzy initial values.

FIGURE 4(a). Fuzzy interval A

A
lp

ha

x

FIGURE 4(b). Function handle

f(
x)

x

FIGURE 4(c). Comparison between analytical solution (solid
line) and its approximation (circle mark)

A
lp

ha

g(A)

650

REFERENCES

Abbasbandy, S. & Allahviranloo, T. 2002. Numerical solutions of
fuzzy differential equations by Taylor method. Computational
Methods in Applied Mathematics 2: 113-124.

Abbasbandy, S. & Allahviranloo, T. 2004. Numerical solution
of fuzzy differential equation by Runge-Kutta method.
Nonlinear Studies 11: 117-129.

Ahmad, M.Z. & Hasan, M.K. 2010. Incorporating Optimisation
Technique into Euler’s Method for Solving Differential
Equations with Fuzzy Initial Values. Proceeding of the
1st Regional Conference on Applied and Engineering
Mathematics: 2 – 3 June 2010, Penang, Malaysia.

Brent, R.P. 2002. Algorithms for Minimization without
Derivatives. New Jersey: Prentice-Hall.

Chalco-Cano, Y., Mizukoshi, M.T., Román-Flores, H. &
Flores-Franulic, A. 2009. Spline approximation for Zadeh’s
extension. Int. J. Uncertainty Fuzziness Knowledge-Based
Systems 17: 269-280.

Dong, W.M. & Wong, F.S. 1987. Fuzzy weighted average and
implementation of the extension principle. Fuzzy Sets and
Systems 21: 183-199.

Dong, W.M. & Shah, H.C. 1987. Vertex method for computing
functions of fuzzy variables. Fuzzy Sets and Systems 24:
65-78.

Hanss, M. 2002. The transformation method for the simulation
and analysis of systems with uncertain parameters. Fuzzy
Sets and Systems 130: 277-289.

Kaufmann, A. & Gupta, M.M. 1991. Introduction to Fuzzy
Arithmetic: Theory and Application. New York: Van Nostrand
Reinhold.

Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. 1983. Optimization
by simulated annealing. Science, New Series 220: 671-680.

Klimke, A. 2003. An efficient implementation of the transformation
method of fuzzy arithmetic. Proceeding of the 22nd
International Conference of the North American, Fuzzy
Information Processing Society, 468-473.

Klir, G. J. 1997. Fuzzy arithmetic with requisite constraints. Fuzzy
Sets and Systems 91: 165-175.

Ma, M., Friedman, M. & Kandel, A. 1999. Numerical solution
of fuzzy differential equations. Fuzzy Sets and Systems 105:
133-138.

Moore, R.E. 1966. Interval Analysis. Prentice-Hall, Englewood
Cliffs, N.J.

Palligkinis, S. Ch., Papageorgiou, G. & Famelis, I.Th. 2008.
Runge-Kutta methods for fuzzy differential equations.
Applied Mathematics and Computation 209: 97-105.

Pederson, S. & Sambandham, M. 2007. Numerical solution
to hybrid fuzzy systems. Mathematical and Computer
Modelling 45: 1133-1144.

Pederson, S. & Sambandham, M. 2008. The Runge-Kutta method
for hybrid fuzzy differential equations. Nonlinear Analysis:
Hybrid Systems 2: 626-634.

Press, W.H., Teukolsky, S.A., Vetterling, W. T. & Flannery, B.P.
2007. Numerical Recipes: the Art of Scientific Computing. 3rd
Edition. Cambridge: Cambridge University Press.

Román-Flores, H., Barros, L.C. & Bassanezi, R. 2001. A note
on Zadeh’s extension principle. Fuzzy Sets and Systems 17:
327-331.

Wood, K.L., Otto, K.N. & Antonsson, E.K. 1992. Engineering
design calculation with fuzzy parameters. Fuzzy Sets and
Systems 52: 1-20.

Yang, H.Q., Yao, H. & Jones, J.D. 1993. Calculating functions on
fuzzy numbers. Fuzzy Sets and Systems 55: 273-283.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8: 338-
353.

Zadeh, L.A. 1975a. The concept of linguistic variables and its
application to approximate reasoning I, Information Sciences
8: 199-249.

Zadeh, L.A. 1975b. The concept of linguistic variables and its
application to approximate reasoning II, Information Sciences
8: 301-357.

Zadeh, L.A. 1975c. The concept of linguistic variables and
its application to approximate reasoning III, Information
Sciences 9: 43-80.

M. Z. Ahmad*
Institute for Engineering Mathematics
Universiti Malaysia Perlis
02000 Kuala Perlis, Perlis
Malaysia

M. K. Hasan
School of Information Technology
Faculty of Technology and Information Science
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor
Malaysia

*Corresponding author; email: mzaini@unimap.edu.my

Received: 23 February 2010
Accepted: 1 June 2010

TABLE 2. Approximation errors for Example 2

α Error
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05

